AMS210.01.

Homework 3

Andrei Antonenko

Due at the beginning of the class, March 14, 2003

- 1. Which of the following statements are true or false? Explain your answer. If false, give a counterexample.
 - (a) For any u_1 , u_2 , and u_3 from V, the system $\mathbf{0}$, u_1 , u_2 , u_3 is linearly dependent.
 - (b) If u_1 , u_2 , and u_3 span V, then u_1 , u_2 , u_3 , and w span V for any $w \in V$.
 - (c) If u_1 , u_2 , and u_3 span V, then dim V = 3.
 - (d) If u_1 , u_2 , and u_3 span V, then they are independent.
 - (e) If u_1, u_2 , and u_3 form a basis for V, then they are independent.
 - (f) If u_1 , u_2 are independent, then they form a basis of V.
 - (g) If u_1 , u_2 , u_3 , and u_4 are linearly independent, then dim V = 4.
 - (h) If u_1 , u_2 , and u_3 are linearly independent, then dim $V \ge 3$.
- 2. Consider the vector space \mathbb{R}^4 . Let $u_1 = (1, 2, -1, 0)$, $u_2 = (2, 1, 1, 1)$, and $u_3 = (-1, 0, 0, 1)$.
 - (a) Find $2u_1 + u_2 u_3$.
 - (b) Find vector $x \in \mathbb{R}^4$ such that $2u_1 + u_2 + 2u_3 + x = \mathbf{0}$.
- 3. Consider the vector space \mathbb{R}^3 . Let $u_1 = (1, 2, 1)$, $u_2 = (2, 1, 3)$, and $v = (1, 2, \lambda)$, $\lambda \in \mathbb{R}$. Find all λ 's such that the vector v can be expressed as a linear combination of u_i 's.
- Determine which of the following sets with standard operations form a vector space (over the field ℝ). Explain your answers.
 - (a) $\{(x, y, x) | x, y \in \mathbb{R}\}$
 - (b) $\{(0, x, y) | x, y \in \mathbb{R}\}$
 - (c) $\{(x, y, 1) | x, y \in \mathbb{R}\}$
 - (d) $\{(x, y, x + y) | x, y \in \mathbb{R}\}$
 - (e) $\{(x,y)|x,y \in \mathbb{R}, x \ge 0\}$

(f) Set of all polynomials of even power: $\{f(t) = \sum_{i=0}^{n} a_i t^i | a_i \in \mathbb{R}, n \text{ is even}\}$

(g) Set of all symmetrical 2 × 2-matrices:
$$\left\{ \begin{pmatrix} a & b \\ b & c \end{pmatrix} | a, b, c \in \mathbb{R} \right\}$$

- (h) Set of all diagonal $n \times n$ -matrices.
- (i) The following set of matrices: $\left\{ \begin{pmatrix} a & b & 2a \\ 2d & c & d \end{pmatrix} | a, b, c, d \in \mathbb{R} \right\}$ (j) $\mathbb{Z}^n = \{(x_1, \dots, x_n) | x_i \in \mathbb{Z} \}$
- 5. Let's consider the following set $\{(x, y) | x, y \in \mathbb{R}\}$ and define operations of addition and multiplication as follows:

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad x_i, y_i \in \mathbb{R}$$

 $c \odot (x, y) = (cx, y), \quad c, x, y \in \mathbb{R}$

Prove that this is not a vector space (over a field \mathbb{R})? Which axioms of vector space are not satisfied?

- 6. Determine whether vector v belongs to the span of vectors u_i 's (i.e., can v be expressed as a linear combination of u_i 's?). Explain your answer. If the answer is yes, find the coefficients of linear combination.
 - (a) Space: \mathbb{R}^3 . Vectors: $v = (6, 9, 14), u_1 = (1, 1, 1), u_2 = (1, 1, 2), and u_3 = (1, 2, 3).$
 - (b) Space: \mathbb{P}_2 . Vectors: $v = t^2 + 2t + 2$, $u_1 = t^2 + 1$, $u_2 = t^2 t$, and $u_3 = t^2 + t + 2$.
 - (c) Space: \mathbb{R}^4 . Vectors: $v = (0, 1, 1, 0), u_1 = (1, 0, 0, 1), u_2 = (1, -1, 0, 0), and u_3 = (0, 1, 2, 1).$
 - (d) Space: $M_{2,2}$. Vectors: $v = \begin{pmatrix} 5 & 1 \\ -1 & 9 \end{pmatrix}$, $u_1 = \begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}$, $u_2 = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, and $u_3 = \begin{pmatrix} 2 & 2 \\ -1 & 1 \end{pmatrix}$.
 - (e) Space: \mathbb{P}_2 . Vectors: v = t + 1, $u_1 = t^2 t$, $u_2 = t^2 2t + 1$, and $u_3 = -t^2 + 1$.
 - (f) Space: \mathbb{R}^3 . Vectors: $v = (2, -1, -1), u_1 = (1, -1, 0), u_2 = (1, -2, 1), and u_3 = (-1, 0, 1).$
- 7. Does the following systems of vectors span V? Explain your answers.
 - (a) Space: $V = \mathbb{R}^3$. Vectors: $u_1 = (1, 1, 0), u_2 = (1, 0, 1), \text{ and } u_3 = (0, -1, 1).$
 - (b) Space: $V = \mathbb{R}^3$. Vectors: $u_1 = (1, 1, 1), u_2 = (1, 0, 1), \text{ and } u_3 = (0, -1, 1).$
 - (c) Space: $V = \mathbb{P}_2$. Vectors: $u_1 = 2t^2 + 2t + 1$, $u_2 = t^2 + 1$, $u_3 = t + 1$.
 - (d) Space: $V = M_{2,2}$. Vectors: $u_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $u_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$, $u_3 = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, and $u_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- 8. Determine whether the following systems of vectors are linearly dependent or independent. Explain your answer.
 - (a) Space: \mathbb{R}^3 . Vectors: $u_1 = (1, 2, 1), u_2 = (-1, 0, 1), \text{ and } u_3 = (3, 8, 5).$
 - (b) Space: \mathbb{R}^3 . Vectors: $u_1 = (1, 2, 1), u_2 = (-1, 0, 1), \text{ and } u_3 = (0, 1, 0).$
 - (c) Space: \mathbb{R}^2 . Vectors: $u_1 = (1, 2), u_2 = (2, 5), \text{ and } u_3 = (7, 7).$
 - (d) Space: \mathbb{R}^3 . Vectors: $u_1 = (2, 5, 6), u_2 = (0, 0, 0), \text{ and } u_3 = (7, 8, 9).$
 - (e) Space: \mathbb{P}_2 . Vectors: $u_1 = t^2 + 1$, $u_2 = 2t^2 2$, and $u_3 = 1$.

(f) Space:
$$M_{2,2}$$
. Vectors: $u_1 = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$, $u_2 = \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, and $u_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

- 9. Does the following sets of vectors form a basis for the specified vector spaces? Explain your answer.
 - (a) Space: \mathbb{R}^3 . Vectors: $u_1 = (1, 2, 3), u_2 = (1, 3, 2)$.
 - (b) Space: \mathbb{R}^2 . Vectors: $u_1 = (1, 1), u_2 = (2, -5), u_3 = (4, 3)$.
 - (c) Space: \mathbb{R}^3 . Vectors: $u_1 = (1, 0, 1), u_2 = (0, 1, 0), u_3 = (-1, 0, 1).$
 - (d) Space: \mathbb{R}^3 . Vectors: $u_1 = (2, 1, -3), u_2 = (3, 2, -5), u_3 = (1, -1, 1).$
 - (e) Space: \mathbb{P}_2 . Vectors: $u_1 = t^2 + t$, $u_2 = t + 2$, $u_3 = t^2 + t + 2$.
- 10. (a) Find the basis and determine the dimension of the vector space of symmetric 2×2-matrices.
 (b) Find the basis and determine the dimension of the vector space of symmetric n×n-matrices.
- 11. (a) Find the basis and determine the dimension of the vector space of skew-symmetric 2×2 -matrices.
 - (b) Find the basis and determine the dimension of the vector space of skew-symmetric $n \times n$ matrices.
- 12. Find the basis and determine the dimension of the vector space of diagonal $n \times n$ -matrices.
- 13. (a) Find the basis of \mathbb{R}^3 containing the following vector $u_1 = (2, 3, 0)$.
 - (b) Find the basis of \mathbb{P}_3 containing the following 2 vectors $u_1(t) = t^3 + t^2$, $u_2(t) = t^2 + t + 1$.
- 14. Find the dimension and basis of the span of the following vectors in the specified vector space.
 - (a) Space: \mathbb{R}^3 . Vectors: $u_1 = (1, 3, 5), u_2 = (2, 2, 2), u_3 = (0, 1, 0).$
 - (b) Space: \mathbb{R}^3 . Vectors: $u_1 = (1, 3, 1), u_2 = (2, 2, 2), u_3 = (4, 1, 4)$.
 - (c) Space: \mathbb{P}_3 . Vectors: $u_1 = 3t^2 + 2$, $u_2 = t^2 + 4t + 2$, $u_3 = 5t^2 4t + 2$.
 - (d) Space: \mathbb{R}^3 . Vectors: $u_1 = (2, 1, 3), u_2 = (1, 2, 3), u_3 = (6, 6, 12), u_4(3, 3, 6), u_5 = (1, -1, 0), u_6 = (4, 5, 9).$
 - (e) Space: \mathbb{R}^4 . Vectors: $u_1 = (1, 3, 2, 1), u_2 = (2, -1, 1, -2), u_3 = (0, 7, 3, 4), u_4 = (3, 2, 3, -1).$
 - (f) Space: \mathbb{P}_3 . Vectors: $u_1 = t^3 + t^2 2t + 1$, $u_2 = t^2 + 1$, $u_3 = t^3 2t$, $u_4 = 2t^3 + 3t^2 4t + 3$.
- 15. Find the ranks of the following matrices

(a)
$$\begin{pmatrix} 1 & 7 & 4 & -2 & 5 \\ 8 & 2 & 2 & -1 & 1 \\ -2 & 4 & 2 & -1 & 3 \end{pmatrix}$$

(b)
$$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

16. For all values of $\lambda \in \mathbb{R}$ find the rank of the following matrix:

$$\begin{pmatrix} 1-\lambda & 0 & 0 & 0 \\ 0 & 1-\lambda & 0 & 0 \\ 0 & 0 & 2-\lambda & 3 \\ 0 & 0 & 0 & 3-\lambda \end{pmatrix}$$

17. [Extra credit] Consider the set of all positive real numbers \mathbb{R}_+ . Define operations as follows:

$$a \oplus b = ab, \quad a, b \in \mathbb{R}_+$$

 $c \odot a = a^c, \quad a \in \mathbb{R}_+, \quad c \in \mathbb{R}$

Is it a vector space (over a field \mathbb{R})?

- 18. [Extra credit] Prove that any $n \times n$ -matrix can be represented as a sum of symmetric matrix and skew-symmetric matrix.
- 19. **[Extra credit]** For all values of λ find the rank of the following matrix:

λ	1	2	 n-1	1
1			n-1	
1			n-1	
1	2	3	 λ	1
$\backslash 1$	2	3	 n	1)